GENERALIZATION OF THE METHOD OF
FUNCTIONAL~INVARIANT SOLUTIONS FOR FINDING OERTAIN
INTEGRALS OF THE HARMONIC AND OF THE WAVE
EQUATIONS WHICH HAVE APPLICATION IN
MECHANICS AND PHYSICS

(CBORSHOHRNIE METODA FUNKTSIONAL'NO-INVARIANTMNYXH
AESHENII DLIA MAKHOZHDENIIA MEXOTORYKH INTBGRALOV
GARMONICHRSXOGO I VOLNOVOGO URAVMEMII, INEIUSHOHIKH
PRILOZHENIR V MEXEANIKR I PIZIKX)

PMM Vol.28, ® 5, 1964, pp.899-907

P.S. CHURIKOV
(ordznonikidze)

(Received April 16, 1964)

General solutions of the equilibrium equations in displacements of the elas-
ticity theory can be expressed, as is well known (see for example [1 to 6])
in terms of harmonic functions, This means that the integration of these
equations reduces, in the final analysis, to the integration of the three-
dimensional harmonic equation. It follows from this that an efficient con-
struction of general forms for the solution of the equilibrium equation of
Lamé is possible only when one knows general, or at least sufficiently broad,
classes of harmonic functions.

It 1s also known that the integration of the dynamic equations of the
theory of elasticity [7] and of the equations of electrodynamics [ 8] can be
reduced to the integration of the three-dimensional wave equation. Hence,
in the analogy to the above, for the determination of general solutions of
these equations one has to have the appropriate classes of wave functions.

The method of functional-invariant solutions (*) which was developed 1in
the works [9 to 14), permits one to find broad classes of harmonic and wave
functions, which have various applications in elasticity theory, in electro-
dynamics and in other fields.

The #&- method, which was developed originally for the wave equation, can
be generalized in various ways. FPFirst of all, one can apply it to equations
of a different type, in particular, to the harmonic equation; secondly, this
method makes it impossible to find solutions which depend not only on one
but on several intermediate arguments each of which is a &~ solution of the
equation under consideration,

*) The method of functional-invariant solutions will be called for the sake
of brevity, the &- method, and the sclutions found by this method will be
referred to as ¢~ solutions,
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Generalization of the method of functional-invariant solutions 1089

In the present work there 1s given a generalization of this method in a
form which can be used for finding integrals of the harmonic (Section 1 and
2) and of the wave (Section 3) equations, which depend on several intermedi-
ate arguments each of which 18 a & - solution of the original equation.

Without loss of generality, we may restrict ourselves to the consideration
of these cases when the & - solution is the product of a finite number of
functione, each of which depends either on one or on two intermediate argu-
ments. This means that for the n-dimensional harmonic equation

M.l 2 (21, .. ., zﬁ)

2 =0 0.1)
or,2 (0.
k=1 Tk
we look for a #$- solution of the form
o= fl (ul) s /m (um) (0.2)
or of the form
O = @, (45, ) - - Pm (Upny Vpy) (0.3)

where Uy = Uy (T3, .. Tp)y Vg = Uy (Zy . . .y Z) 5 sOme of the functions e,
may depend on one argument only.

The functions [g,, and uy,, v, will be assumed to possess the necessary
properties of differentiability witﬁ respect to the variables y,, v, and x,,
respectively. The simplest case (0.2) for which & = #,{y,), was considered
in papers [9 to 12 and 14]. We shall consider the cases when # = glu, )22 (us),
and when % = g, (u,,v,). The cases of more complicated dependences can be
treated in an analogous manner.

1. We shall look for & solution of the n~dimensional Laplace equation in

the form of a produéc of two functions
D = f,(u)f (V) (1.1)

each of which depends on one intermediate argument which is a &- solution
of the equa%ion (0.1). Substituting (1.1) into (0.1), we obtain (”).

L (u " A 1 1w Ju \*®
fal) L 5 2 +/1()‘%f,f)— ;,”.+/()d’§u<-)2(m) +

. 1 (u 2 v du
T+ ST

dv* Tdu 6zk azk

In order that Equation (1.2) be satisfied identically for arbitrary func-
tions g, (u) and yg,(v) 1t is necessary that

Z;;: =0, Y2 (1.3)
SE =
S =0 (1:5)
We note that Equations (1,4) are the equations of the characteristics of
Ecuations (1.3).

From Equations (1.3) to (1.5) we deduce that 1f the functions g, (y) and

#) The sum in Equation (1.2) and in the sequel, 1s taken from 1 to n .
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fz(v) are to be §- solutions of Equation (0.1) 1t is necessary and suffici-
ent that the srguments of these functions satisfy simultaneously the given
equations (0.1) and the equation of 1ts characteristics, and also condition
(1.5) which expresses the orthogonality of the gradients of these arguments.
The condition (1.5), obviously, ,drops out if one looks for a & - solution
which depends only on one argument. Therefore, the determination of a & -
solutlion which 1is given in [11], is useful only for this simplest case.
Hence, the method of finding a & - solution which 1is based on the use of a
complete integral of the equation of the characteristics is applicable in

those cases when the ¢ - solution is a function of more than one intermediate
argument.

Let us conslder the simplest case, when both intermediate arguments oy
and v 1in (1.1) are linear functions of the basic variables Xyseees Xp o

For this we set

u=2 [0 1% 8 v = Ekak (16)

where o, and 8, are quantities which are independent of x, and are either
constants or depend on one or several parameters.

In this case Equations (1.3) are satisfied identically, and Equations {(1.4)
and (1.5) w1ll have the forms

Zou? =0, ZB2 =0, Py =0 (1.7)
respectively.

We deduce from this that the quantitles q,, B, have to be subjected to
conditions (1.7) in order that the functions u, v, glven by Formulas (1.6),
may be ¢ - solutions of Equation (0.1). From (1.7) it is obvious that none
of the q, and 8, can be real values different form zero. This means that
the arguments of the §&- solutions of the harmonic equation are always com-
plex and imaginary. Therefore, we may set ~
Substituting these values into (1.7) and equating to zero the real and imag-
inary parts of each of these equations we obtain

z (ak2 —_ bk2) = 0, z (Ck2 — dkz) o 0, Zukbk =0
Zepdy = 0, 2 (akex — bpdy) = 0, Z (agdy + brey) = 0
Thus, the 4n real values a,, b,, ¢, and 4, (k = 1,..., n) must satisfy

a system of six . equations (1.8). For every n > 2 this system 1s undeter-
mined, and hence has an infinite number of solutions to each of whiph there

(1.8)

corresponds a definite &~ solution of Equation (0.1).

We shall call this infinlte number of solutlons the first class of §&-
solutions of the harmomic equation.

We shall indicate some solutions of Equation (0.1) which belong to the
first class
I, Let pn = 2. Then for
ay b, az b ¢ dy c2 d»

cost, —sint  —sing  —cosl cost:  sint: sinf, — costy

Equations (1.8) will be satisfied. Hence, the functions
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u = (€05t — isin ;) z; — (sin {; + i cos ¢;) x, (1.9)
v = (cos t3 - isin t,) x1+4 (sin t; — i cOs 1) x,

are %- solutions of the two-dimensional harmonic equation. The product of
arbitrary runctiops of u, v wlll also be a ¢ - solution of this equation.

II. Letall g,=0 and n = 3 . Then the system (1.8) will be satlsfied by

a, b a, b, ay by
(1) 0 cosy 0 sin ¢, 1 0
(2) cos iy 0 sin ¢ 0 0 1
3 0 1 cost;, O sing O

The whole complex of values (1), (2), (3) leads to the é&- solutions,
respectively: . .
Uy = iz 008 fy + iz sin fy + 75

Ug) = %1 0PS g + Ty 5in by + izg (1.10)
Uy = izy + 23 €05 2y + 23 sin &

III. Let all By=0 and n = 4, then the system (1.8) will be satisfiled
by

a1 b ag by ag by a, by
(1) sin¢cost;, O singsingg O costy O 0 1
(2) cosg 0 sin 4, 0 0 cost, 0 sint,

These values yield respectively the following &- solutions which depend
on two parameters:

ug) = 7, 5in #; €0S 1y + 7, sin 2y sin & + 75 €08 4 + izg

. . . 1.11
Uy = Ty €St Zpsin Yy + izgcos ty +izysin ¢ (.11)

We call attention to the fact that if one has found any harmonilc functions
which depend on one or more parameters then other harmonic functions can be
obtalned by differentiating the found harmonic functions with respect to the
parameters, or by multlplylng these functions by arbitrary functions of the
parameters and then integrating the products. The solution of Whittaker which
was obtalned by him in,a different way, and was given in [15}, for example,
can be derived from (1,10) by integration with respect to ¢, from O to r .
From (1.11) one can obtain in an analogous manner the followlng solutions of
the four-dimensional harmonic equation

T %

O = S S f(xisint;cosit, 4 22 8in £ Sin ¢z + 23 oS Uy + ixq, b1, t2) dty dty

—t =7

®on (1.12)
o= S \ f(xy €08ty + xp8in by - iz COS 1y =~ ixg SIN 1y, U, 8,) dy dt,

“n

Here y 1s a function which permits differentiation under the integral
sign.

Let us consider the case when the solution of the n-dimensional Laplace
equation is a function depending on two intermediate arguments each of which
is a &- solution of Equation (0.1). This case was first treated by a dif-
ferent method for the two-dimensional harmonic equation in [16], and for the
three-dimensional equation in [17]. For the n-dimensional equation this case
was conslidered in the paper [13], the basic results of which will be used
here,

2. We shall look for a solution of the n-dimensional Lapalce equation
(0.1) in the form
O =D (u, ) (2.1)

where the intermediate arguments uy and v are assumed to be functions of
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the coordinates x,,..., x,. Evaluating the second derivatives of the func~
tions § with respect to the coordinates x, , making use of (2.1) and sub-
stituting their values into (0.1), we obtain

P 0@ a2 g, 00 2 _ag’_z .
AGa+2B g5 +C G5 + Vg + V5, =0 (2.2)
where
0y _gou oo gy
A—Z(E)’ B_Zaxk dz, ' C_Z‘<8rk)
2. %u % % (2'3)
viu = Ei: Vo = azkz

Equation (2.2) will be satisfied identically by an arbitrary function
$#(u,v) 1f each of the sums which appear in (2.3) 1s equal to zero. Herce,
in this case we get again the system of Equations (1.3) to (1.5). In order
to consider any integrable case of this system distinct from (1.6), we assume
that the functions w and v are determined by means of Equations

u = Zoaxxx T Yo (Zxkz)'/’» v = Zpxzx + 7 (Zxp®)h (2.4)
where vy, and vy are arbltrary constants; a, and g, have the same meaning
as in (1.6). Let us evaluate the coefficlents 4, B, C, of

Equation (2.2) under the condition that y and v are determined by Equa-
tions (2.4). Differentiating {2.4) we obtain

W) =S+ 2 =1 c=Enhk=t2on (25)

This shows that by using o, and vy, one can obtain a more simple expres-
sion for 4 Dby setting .
Zai® = 1¢° (2.6)

Performing analogous operations, one can show that for the derivation of
more simple expressions for the coefficlents p and (¢ one must make use
of the arbitrarilness of a,, 8, and y , and set

22 = 12, SaBr = ToT 2.7
With the aid of (2.6) and (2.7) we finally obtain the following values
for the coefficients of Equation (2.2):

A=2p—, B=-—(utr), C=20=
n—1 n—1 (2.8)

 Tor T =—7

Vi =
Substituting the derived coefficients into Equation (2.2), we obtain
92D 92D b 0] n—1 ap I
Tot = + (T8 4 T00) g + 10 5r + (T"Fu‘ + 75:7) =0 (2.9)

Let us conslder various cases which may occur here.

a) Equation (2.9) will be satisfled 1dentically if one sets y,=y = O.
In this case the function 1y and » will satisfy Equation (0.1) because
of (2.8), and Equations (2.6) and (2.7) will become (1.7). Therefore, we
arrive again at the considered first class of §-solutions of the harmonic
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equation .

b) Let us assume that Yo#0 and y # O . The equation of the charac-
terisctics for Equation (2.9) will have the form

v du? — (Yu + 7,0) dudv + yude® = 0 (2.10)
This is equivalent to two linear equatilons
du/ dv = ulv, dul/dv=1,/7 2.11)

which, for real vy, and y , determine two families of real characteristics.
Integrating these last equations and denoting the characteristic coordinates
by £ and n , we get

E = u— Tob, n=u/v (2.12)
Transforming (2.9) in terms of the characteristic coordinates we obtain
#»0 | n—38 90 _ (2.13)
€M % oM

Integrating the last equation first with respect to n and then with
respect to £ , we find

=g (B + ™y (2.14)
where ¢{g) eand ¥(n) are arbitrary functions of their arguments.

Returning to the original variables, we get
D = ¢ (Tu — T1o%) + (Yu — 1o)™Y (u/ ?) (2.15)

We deduce from Equation (2.15) that the function e(yu — yov) 18 8 #-
solution of Equation (0.1). 1In regard to the function 4(u/v) 1t can be
said that 1t will not be a $-solution of the harmonic equation for arbitra-
ry n .

If n # 3, it can be seen from Equation (2,15) that the arbitrary func-
tion y(u/v) will become a solution of Equation (0.1) only after it has been
multiplied by the definite function

(3-n)/2
(Yu — 7To?) (2.16)
In accordance with [12], we shall call such a sclution a generalized
$-solution of Equation (0.1).

The set of all $é-solutions and generalized ¢-solutions which are deter-
mined by Formula (2.15) we shall call the second class of #-solutions of
the harmonic equation in the n-dimensional space,

If n =3, we £find from (2.15) the integral [17]
O =gtu—1%) +¥ (/) (2.17)

On the basis of (2.17) we conclude that only the three-dimensional Laplace
equation has two $-solutions which belong to the second class,

Let us set & = 3(u) , where uy 1s determined as before by Equation (2.4).
From (2.9) we obtain

4+ 214 —o (2.18)
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for this case.

Integrating the last equation, we get
D () = C, + Cue-mra (2.19)

where (, and (, are arbitrary constants.

The solutions which are determined by Formula (2.19) will not be &-solu-
tions because §(y) 18 a fixed function of u . Let us consider this case
in greater detall for the three-dimepsional equation, When »n = 3, the
integral &(u) is not determined by Formula (2.19). For 1lts determination
one has to integrate (2.18) with n = 3 . This results in

D) =C»+C,0Inu (2.20)
where C,;)and C,) are arbitrary constants. This integral, too, will not
be a $-solution of the three-dimensional harmonic equation.

The integrals (2.19) and (2.20), which we shall consider with an accuracy
up to within arbitrary constants, will have a simpler form 1f we set y,= 1,
and if we assume additionally thac o,= O when k¥ # ¢, ay,=% 1 when x-=1¢,
where ¢ 1s any arbltrary values of k¥ . In this case y =r & x,, and the
integral (2.19) will have the form

O ) = (r+ @)™ (n = 3) (2.21)
where x, can be any of the coordinates., In regard to the integral (2.20)

it can be sald that it reduces under these conditions to known functions of
the three-dimensional logarithmic potential

® =In(r+ z) (2.22)

We note that the integral (2.19) will be an irrational function of yu
for n even and a rational function for n odd. Let us see whether or not
certain known integrals of Equation (0.1), which depend on r only, belong
to the above defined classes of harmonic functlons. We consider integrals
which up to additive constants have the form [ 18]

@ (r) = 1" when n>2, O (r)=1In —:— when =2 (2.23)

By direct verification one can show that the integrals (2.23), to within
constants, are, for n odd, partial derivatives of order (n—1)/2 with
respect to x, of the integrals (2.21) and (2.22).

» o0 F.) 1
Indeed (%) o = T In(r + zx) = — when n=3
0 & 1y 1 —5 2.24
3z, Oz (f + xk) o when n=> N
"o — am 1 = 1 when n =2m 41
or,™ o™ \ (rfm)™ romt

*) In the evaluation of the derivatives of the integrals (2.21) and (2.22)
the minus sign 1s omitted in front of x,. This is unessential because the
corresponding derivatives of &(u) are equal to the integrals (2.23) when
n 1s odd only to within additive and multipllicative constants.
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For spaces of an even number of dimensions the integrals depending on r
cannot be obtalned in this manner. Hence, if they are contalned in the above
classes of harmonic functions, then they must belong to the first class, For
certain even » , this is actually the case. Thus, for example, when n=2

we have (2.25)
1 1 1 , .
O(r)=In—=1In = — — [In(z; + iz5) + In (2, — iz;)]
") r (21 + iza) (21 — iza)] 2 )
This equation implies that the function h](l / r) belongs to the first
class of $§-solutions.

When n = 4 , it follows from {2.23) that

O(r)= b=+ (2.26)
r uu 4 vv

where

U=z, €08t + x,8in b, + i (z3c08 L, + z48in L)

v=2x,8n ¢t — T, 08 t; + i (z;5in t, — T4 COS Ly)
and the varlables y and v differ from the variables y and v by a
minus sign in front of the imaginary part. Since u, u, v and T are §-
solutions of the four~-dlmensional harmonic equation, and belong to the first
class, it follows from (2.26) that 1/r? also belongs to this class,

We note that if one seeks solutions not of the form (1.1) and (2.1), but
eof the form
D = f1(u) fa (v) s W), D = f(u, v, w) (2.27)

respectively, then each of the arguments y, v and p will satisfy, In addi-
tion to the original equations and the equations of the characteristic, three
equations which express the conditions of the pair-wise orthogonality of
their gradients. One can show by direct computation that an increase of the
number of intermediate arguments and, hence, also the number of functions in
the right-hand sides of Equatlons {2.27) will not lead to the appearance of
new conditions which are necessary and sufficient in order that these argu-
ments and functlions may be &-solutions of Equation (0.1). On the basis of
(1.3) to (1.5) we deduce that the determination of a §=-solution as solution
which satisfies a given equation and the equation of 1ts characteristlcs
which was used in [11 and 14], cannot be generalized to those cases when
these solutions are functions of more than one intermediate argument. In
these latter cases one. has, in addition to the indicated two conditions, the
requirement that the gradients of the intermediate arguments must satisfy
also the conditions of pair-wise orthogonality.

3. The wave equation in an (n—1)-dimensicnal space,

12® (24, .. ., T 2D

-y ( 1 i ' _1) — __1:_ A (31)

} da,2 PEIRFYY]

Kl

can be transformed with the substitution x,= fet 1nto an pn-dimensional
Laplace equation of the form (0.1). Making use of the results of the pre-
ceding Section, we can glve examples of &-solutions of Equation (3.1).
We note that for the wave equation the system of equations (1.7) may have
real solutlons,

With the aid of the first one of Formulas (1.12) and with the substitu-
tions ~ we can find the solution of the three-
dimensional wave equation which has been obtained in a different way by
Whittaker [15]

n =
QD = & S f (Ct sin t; €0S i, + Y sin ty sin ty - zc0sty — ct, gy tz) dtl d‘g (3.2)
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Multiplying the first of the solutions (i.l1) by .8int¢,, and integrating
with respect to the parameters from 0 to 2n and from 6 to m , we obtain
the integral

m
A

Y

o~

\ 2 T ysing sing L zcost —ct, 1y, &,)sint, diy dt,  (3.3)
0
which also was found by Whittaker [15Eé and was used by Debye for the investi-

gation of light waves near the focus

We call attention to the fact that the integrals (3.2) and (3.3) will remain
to be wave functions for different 1limits of integration also, These limits
may be constants or they may depend on one of the parameters. The properties
of ¢&-solutions permit one to use, for example, as limits of integration of
one of the repeated integrals O and ¢ , wherée g 1s determined by Equation

n
( A P s
)/ {Z 8in & cos
0

zsin fcost,  ysin Bsint, f zcos § — et = F(B) (3.4)

and () is an arbitrary function.

With the aid of (1.11) one can obtain also the following integral of the
three-dimensional wave equation
T 2n
o= S \ exp [ik (z sin ¢, cos ty + ysin ¢ sin t;  zcos ¢y — ct)] f (4, &) dy diy (3.5)
-7 '0
In an analogous manner one can show that the solutions which are used in
the theory of the propagation of Rayleigh waves (7], and also the solutions

obtained in [11], belong to the first class of harmonic functions; one needs
only to replace x, by t{o¢ .

The obtained classes of $-solutions of the harmonic and wave equations
are, of course, not general solutions of these equations., Thus, for example,
the known wave function of Euler [8]

O=rlsin(r—ct) (P2=2a®+y®+ 2 (3.6)

and a&lso the generalized Euler wave functions
O =r1f(r+tect) 3.7
(where is an arbitrary function) do not belong to the first nor to the

second class of the obtained ¢-solutions., It 1s obvious that all wave func-
tions which can be obtained from the Euler functions by a change of variables
can not belong to this class,

We note that the set of permissible transformations of wave (harmonic)
functions, which yleld again wave (harmonic) functions, includes the follow-
ing: addition, differentiation with respect to the coordinates x,...,x,;,¢,
and also any orthogonal transformation of the rectangular coordinate axes
relative to which the wave (harmonic) equation 1s covariant, Other permis-
sible transformations are: integration with respect to parameters on which
the wave function may depend; such integration of products of wave functions
by arbitrary functions of these parameters.

In conclusion we call attention to the fact that the generalized method
of §-solutions, just as any other methods, permits one to effectively con-
struct only certain particular classes of harmonic and wave functions, Hence
{keeping in mind that general solutions of the equations of equilibrium and
motion in elasticity theory are expressed by means of such functions) one
can assert that i1t is still impossible to give an effective construction of
general solutions of the equations of the theory of elasticity. However,
the obtained classes of harmonic and wave functions are sufficiently broad
to include the solutions of many problems of practical value.
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