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Oeneral solutions of the equilibrium equations In displacementa of the elaa- 
tlclty theory can be expressed, aa Is well known (see for example [l to 63) 
ln term8 of harmonic functions. This means that the Integration of these 
equations reduces, ln the final analysis, 
dimenalonal harmonic equation. 

to the Integration of the three- 
It follows from thle that an efficient con- 

atructlon of general forma for the eolution of the equilibrium equation of 
Larm? la possible only when one knows general, or at least sufficiently broad, 
claseee of harmonic functions. 

It ie also tiown that the Integration of the dynamic equations of the 
theory of elasticity 271 and of the equationa of electrodynamics 183 can be 
reduced to the Integration of the three-dimensional wave equation. 
ln the analogy to the above, 

Hence, 
for the determination of general solutions of 

these equation8 one hae to have the appropriate ClaPaea of Wave functions. 

The method of functional-invariant eolutlone ("3 which was developed In 
the worka 19 to 143, permit6 one to find broad clasaee of harmonic and wave 
functiona, whloh have various appllcatlone ln elaatlclty theory, In electro- 
dynamics and ln other flelda. 

The I- method, which wae developed originally for the wave equation, can 
be generalized ln varloue ways. First of all, one can apply It to equatlona 
of a different type, in particular, to the harmonlc equation; secondly, this 
method make8 It lmposelble to flnd solution8 which depend not only on one 
but on several intermediate arguments each of which Is a #- solution of the 
equation under consideration. 

") The method of functional-invariant aolutlons will be called for the sake 
of brevity, the +-method, and the solutions found by this method will be 
referred to a6 +- solutions. 
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In the preeent work there le given a generalization of thle method In a 
form which can be ueed for flndlng integrals of the harmonic (Section 1 and 
2) and of the wave (Section 3) equations, which depend on aeveral lntermedl- 
ate argument8 each of which is a i - eolutlon of the original equation. 

Without lose of generality, we may restrict ourselves to the conelderatlon 
of these cases when the +- aolutlon la the product of a finite number of 
functiona, each of which depend8 either on one or on two intermediate argu- 
ments. Thle means that for the n-dimensional harmonic equation 

n B@ (21, . . .) ZR) 

2 c3Zk’ = O (0.1) 
k-=1 

we look for a Q- solution of the form 

or of the form 

where uk = Uk (z,, . . ., 2,). vk = vk (21, . . ., ZJ ; come of the function8 ‘pI: 
may depend on one argument only. 

The functions Ir, rp and Us, u will be assumed to poaeees the necessary 
properties of dlfferertrablllty with reepect to the variable8 Ut, v, and .rL, 
respectively. The simplest case (0.2) for which I = y,(u ), waa considered 
ln paper8 [9 to 12 and 141. 

+ = CPI (u, , “1) - 
We shall conelder the canes when +-j(U, )fa(u,), 

and when The caees of more complicated dependence8 can be 
treated in an analogoua manner. 

1. We shall look for a eolutlon of the n-dlmenalonal tiplace equation in 

the form of a produc’t of two function8 

@ = 11 (4 12 (4 (1.1) 

each of which depends on one intermediate argument which IS a +- solution 

of the equation (0.1). Substituting (1.1) Into (O.l), we obtain (“1. 

In order that Equation (1.2) be satisfied identically for arbitrary func- 

tions I, (u) and la(u) It 18 necessary that 

(1.3) 

(f.4) 

(i-5) 

We note that Equations (1.4) are the equations of the characteristics of 

Equations (1.3). 

From Equations (1.3) to (1.5) we deduce that if the function8 y,(u) and 

;) The sum ln Equation (1.2) and In the sequel, Is taken from 1 to n , 



1090 P.S. Churlkov 

fz(u) are to be *- solutions of Equation (0.1) It 1s necessary and suff~cl- 

ent that the srguments of these functions satisfy simultaneously the given 

equations (0.1) and the equation of Its characteristics, and also condltlon 

(1.5) which expresses the orthogonallty of the gradients of these arguments. 

The condition (1.5), obvlously,,drops out If one looks for a #- solution 
which depends only on one argument. Therefore, the determination of a +- 
solution which Is given In [ll], 
Hence, 

Is useful only for this simplest case. 
the method of finding a #- solution which Is based on thz use of a 

complete Integral of the equation of the characteristics Is applicable In 
those cases when the #- solution Is a function of more than one Intermediate 
argument. 

Let us consider the simplest case, when both Intermediate arguments u 

and u in (1.1) are linear functions of the basic variables x,,..., x,. 

For this we set 

u = 2 a&&, v = za,xk (1.6) 

where ak and By are quantities which are independent of xt and are either 

constants or depend on one or several parameters. 

In this case Equations (1.3) are satisfied Identically, and Equations (1.4) 

and (1.5) will have the forms 

&k2 = 0 9 zpk2 = 0, &kPk = 0 (1.7) 
respectively. 

We deduce from this that the quantities ar, gh have to be subjected to 

conditions (1.7) In order that the functions u, u, given by Formulas (1.6), 

may be 4 -solutions of Equation (0.1). From (1.7) it Is obvious that none 

of the a, and gt can be real values different form zero. This means that 

the arguments of the #- solutions of the harmonic equation are always com- 

plex and Imaginary. Therefore, we may set 

Substituting these values Into (1.7) and equating to zero the real and Imag- 

inary parts of each of these equations we obtain 

2 (ak2 - bk') = 0, >: (ck* - dk') 0, Zn,&l, = 0 

&d, = 0, 2 (a@& - b,d,) --; 0, 2 (@,.d,, -,- h&) ‘= 0 
(1.8) 

Thus, the 4n real values a,, b,, cr and dr (k = 1,. . ., n) must Satisfy 

a system of sIx,equatlons (1.8). For every n > 2 this system is undeter- 

mined, and hence has an Infinite number of solutions to each of which 

corresponds a definite +- solution of Equation (0.1). 

We shall call this Infinite number of solutions the first class of 

solutions of the harmomlc equation. 

We shall Indicate some solutions of Equation (0.1) which belong to 
first class 

I. Let n = 2. Then for 

there 

the 

01 b, (12 b:! c I 4 c2 d.2 

cos t, - sin 1, - sin t, - cos I, cos t2 sin 12 sin t2 - COS t2 

Equations (1.8) will be satisfied. Hence, the functions 



n = (Cos t, - i sin tl) 2, - (sin t, + i cos tJ z2 

u = (cos t, + i sin 1.J zl+ (sin t, - i cos tz) z2 
(1.9) 

are +- solutions of the two-dimensional harmonic equation. 
arbitrary functions of u, s 

The product of 
will also be a B- solution of this equation. 

II. Letall B;-0 and n=3. Then the system (1.8) will be satisfied by 

(1) 
(2) 
(3) 

The whole complex 
respectively: 

a1 b, a2 b, a3 4 
0 cos fl 0 sin tl 1 0 

co9 t1 0 sin tl 0 0 1 
0 1 cos 1, 0 sin t, 0 

of values (l), (2), (3) leads to the O- solutions, 

utl) = ix, cos tl + ix2 sin t, + z3 

*(a) = I~ cps tl + z1 sin tl + iz, (f.10) 

utsj = iz, + z2 cos tl + z3 sin t, 

III. Let all gk= 0 and 
bv 

n = 4, then the system (1.8) will be satisfied 

al bl aa ba a3 bs a, b, 

(1) sin 1, cost, 0 sin t, sin t, 0 cos t, 0 0 1 

(2) cos t, 0 sin t, 0 0 cos t, 0 sin t, 

These values yield respectively the following i- solutions which depend 
on two parameters: 

U(~) = r1 sin t, cos la + x2 sin t, sin 1, + 23 COS TV + iz, 

ulaj = z1 cos tl + 53 sin t, + iz, cos t, +iz, sin t 
(1.11) 

We call attention to the fact that If one has found any harmonic functions 
which depend on one or more parameters then other harmonic functions can be 
obtained by differentiating the found harmonic functions with respect to the 
parameters, or by multiplying these functions by arbitrary functions of the 
parametersand then integrating the products. The solution of Whlttaker which 
was obtained by him ln,a different way, and was given In [Fj], 
can be derived from (i.10) by Integration with respect to 

for example, 
t, from Oton. 

From (1.11) one can obtain In an analogous manner the following solutions of 
the four-dimensional harmonic equation 

x x 

@= 
ss 

f (zl sin tl cos t, + cc; sin tl sin tz + ~3 cos 11 + ia, tl, t2) dh dt2 

-z --li 

r: n 
(1.12) 

@= 
s\ 

,’ f (q cos tl + x2 sin t, .i- iz, cos f2 +- ix, sin I,, 1,, 1,) dt, dt, 
-7% -z 

Here y 1s a function which permits differentiation under the integral 
sign. 

Let us consider the case when the solution of the n-dimensional Laplace 
equation Is a function depending on two Intermediate arguments each of which 
Is a )- solution of Equation (0.1). This case was first treated by a dlf- 
ferent method for the two-dimensional harmonic equation In [16], and for the 
three-dimensional equation In [ 173. For the n-dimensional equation this case 
was considered In the paper (133, the basic results of which will be used 
here. 

2. We shall look for a solution of the n-dimensional Lapalce equation 

(0.1) ln the form 
CD = CD (u, v) (2.2) 

where the Intermediate arguments u and v are assumed to be functions of 
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the coordinates X, , . . ., X, . Evaluating the second derivatives of the func- 

tions # with respect to the coordinates rt , making use Uf (2.1) and sub- 

stituting their values Into (O.l), we obtain 

where 
A$+2Bag+C (2.2) 

“=x(e)2, c =q+” 
k 

v2u=xa$, anv 
v2v = &q 

(2.3) 

Equation (2.2) will be satisfied Identically by an arbitrary function 

B(u,u) If each of the sums which appear In (2.3) Is equal to zero. Herice, 

In this case we get again the system of Equations (1.3) to (1.5). In order 

to consider any Integrable case of this system distinct from (1.6), we assume 

that the functions a and v are determined by means of Equations 

U = &,@k + 10 (‘~5k2)‘% u = i&xk + r (zsk2)“’ (2.4) 

where YO and Y are arbitrary constants; a, and ~~ have the same meaning 

as ln (1.6). Let us evaluate the coefficients A, 8, C, of 
Equation (2.2) under the condition that u and u are determined by Equa- 

tions (2.4). Differentiating (2.4) we obtain 

(r = (Zr,z)“*, k = 1,2, . . . , n) (2.5) 

This shows that by using ct and y0 one can obtain a more simple expres- 

sion for A by setting 
&k2 : To’ (2.6) 

Performing analogous operations, one can show that for the derivation of 

more simple expressions for the c?efflcients B and c one must make use 

of the arbitrariness of Qt 3 8t and y , and set 

2:pk2 = +f, x”kpk .= To?, (2.7) 
With the aid of (2.6) and (2.7) we finally obtain the following values 

for the coefficients of Equation (2.2): 

A = 2y,+ B = f (yu -;- you), c=27p 

(2.8) 

Substituting the derived coefficients into Equation (2.21, we obtain 

7OU 

aaa, 
ad 

Let us consider various cases which may occur here. 

a) Equation (2.9) will be satisfied Identically If one sets yo= y = 0. 

In this case the function 1~ and u will satisfy Equation (0.1) because 

of (2.8), and Equations (2.6) and (2.7) will become (1.7). Therefore, we 

arrive again at the considered first class of +-solutions of the harmonic 
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equation . 

b) Let UE assume that y. # 0 and y # 0 . The equation of the charac- 

terlsctlcs for Equation (2.9) will have the form 

yvaus - (7~ + rev) dudu + rc,Udfl = 0 (2.lb) 

This is equivalent to two linear equations 

du / dv = u/v, du I dv = 70 I 7 (2.11 ) 

which, for real v0 and y , determine two families of real characteristics. 
Integrating these last equations and denoting the characterlstlc coordinates 

by < and Q , we get 
E = yu- rev, Vl=ulv (2.12) 

Transforming (2.9) in terms 'of the characterlstlc coordinates we obtain 

(2.13) 

Integrating the last equation first with respect to q and then with 

respect to 5 , we find 

0 = cp (8 + E@+% @I) (2.14) 

where (p(5) and s(q) are arbitrary functions of their arguments. 

Returning to the original variables, we get 

CD = cp (??A - ToV) + (ru - rCl@@-")~ (u / v) (2.15) 

We deduce from Equation (2.15) that the function Q(YU - you) is a P- 

solution of Equation (0.1). In regard to the function '((u/u) It can be 

said that It will not be a #-solution of the harmonic equation for arbltra- 

ry n . 

If nZ3, It can be seen from Equation (2.15) that the arbitrary func- 

tlon *(u/u) will become a solution of Equation (0.1) only after It has been 

multiplied by the definite function 

(P 
- *cy)(s-n)n (2.16) 

In accordance with [12], we shall call such a solution a generalized 

O-solution of Equation (0.1). 

The set of all @-solutions and generalized #-solutions which are deter- 

mined by Formula (2.15) we shall call the second class of ~-solutions of 

the harmonic equation In the n-dimensional space. 

If n=3, we find from (2.15) the integral [17] 

Q,=cp(yu- roe + 9 (u / 4 (2.17) 

On the basis of (2.17) we conclude that only the three-dimensional Laplace 
equation has two #-solutions which belong to the second class. 

Let us set # = B(u) , where u Is determined as before by Equation (2.4). 

From (2.9) we obtain 

(2.18) 
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for this case. 

Integrating 

where C, and 

the last equation, we get 

0 (U) = c, + C,U(s-n)/a 

C, are arbitrary constants. 

(2.19) 

The solutions which are determined by Formula (2.19) will not be $-solu- 
tlons because B(u) is a fixed function of u . Let us consider this case 
ln greater detail for the three-dimensional equation. When n = 3 , the 

integral #(IA) Is not determined by Formula (2.19). For its determination 

one has to Integrate (2.18) with n = 3 . This results In 

0 (U) = C,(l) + Cz(l) In u (2.20) 
where C,(l) and C,(l) are arbitrary constants. This integral, too, will not 

be a B-solution of the three-dimensional harmonic equation. 

The Integrals (2.19) and (2.X), which we shall consider with an accuracy 

up to within arbitrary constants, will have a simpler form If we set y,,= 1, 

and If we assume additionally that a,= 0 when k # t , ak= f 1 when k = t, 

where t is any arbitrary values of k . In this case u = f f zt, and the 

Integral (2.19) will have the form 

0 (U) = (r f zk)(3-n)'a (n # 3) (2.21) 

where xk can be any of the coordinates. In regard to the integral (2.20) 

It can be said that It reduces under these conditions to known functions of 

the three-dimensional logarithmic potential 

u) = In (r f Zk) (2.22) 

We note that the integral (2.19) will be an lrratlonal'function of u 

for n even and a rational function for II odd. Let us see whether or not 

certain known integrals of Equation (0.11, which depend on 7 only, belong 

to the above defined classes of harmonic functions. We consider integrals 

which up to additive constants have the form [la] 

@((r)" Y-n l&al n>2, cP(r)=lI+lmn=2 (2.23) 

By direct verification one can show that the Integrals (2.23), to within 

constants, are, for ~1 odd, partial derivatives of order (n-l)/2 with 

respect to xk 

Indeed (“1 

of the Integrals (2.21) and (2.22). 

a@ -=*ln(r+5k) =+ when n=3 
axk 

whaln=3 (2.24) 

8% am 1 I 
-=- 

tr +xk)"' 
=,an-1 whenn=2m+l 

arkm azkm 

*) In the evaluation of the derivatives of the Integrals (2.21) and (2.22) 
the minus sign Is omitted In front of xk. This Is unessential because the 
corresponding derivatives of O(u) are equal to the integrals (2.23) when 
n Is odd only to within additive and multlp~lcative constants. 
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For spaces of an even number of dimensions the Integrals depending on r 

cannot be obtained In this manner. Hence, If they are contained In the above 

classes of harmonic functions, then they must belong to thd first class. For 

certain even n , this is actually the case. Thus, for example, when n= 2 
we have (2.25) 

CD(r) = In+- c in 
1 

[(ml+ iza) @I- izs)l v1 = - + [In(s, + iss)+ In (s,-&)I 

This equation Implies that the function In (1 / r) belongs to the first 

class of *-solutions. 

When h = 4, it follows from (2.23) that 

(2.26) 

where 

u = x1 cos t, + X, sin 1, + i (x3 cos t, + x4 sin t2) 
u = x1 sin t, - xs co9 t, + i (x3 sin t, - 34 COS &J 

and the variables L and u differ from the variables u and v by a 

minus algn in front of the Imaginary part. Since u, 'G, v and t; are #- 

solutions of the four-dimensional harmonic equation, and belong to the first 

class, It follows from (2.26) that l/r" also belongs to this class. 

We note that if one seeks solutions not of the form (1.1) and (2.1), but 
of the form 

UJ = fi (u) /l(b) /a (49 @= f(% v,w) (2.27) 

respectively,then each of the arguments n, v and m will satisfy, in addi- 
tion to the original equations and the equations of the characteristic, three 
equations which express the conditions of the pair-wise orthogonallty of 
their gradients. One can show by direct computation that an Increase of the 
number of Intermediate arguments and, hence, also the number of functions In 
the right-hand sides of Equations (2.27) will not lead to the appearance of 
new conditions which are necessary and sufficient in order that,these argu- 
ments and functions may be +-solutions of Equation (0.1). On the basis of 
(1.3) to (1.5) we deduce that the determination of a b-solution as Solution 
which satisfies a given equation and the equation of Its characteristics 
which was used In [ll and 143, cannot be generalized to those cases when 
these solutions are functions of more than one intermediate argument. In 
these latter cases one has, In addition to the Indicated two conditions, the 
requirement that the gradients of the Intermediate arguments must satisfy 
also the conditions of palr-wise orthogonallty. 

3. The wave equation in an (n-l)-dlmenslonal space, 

can be transformed with the substitution x.= tct into an n-dimensional 
Laplace equation of the form (0.1). Making use of the results of the pre- 
ceding Section, we can give examples of *-solutions of Equation (3.1). 
We note that for the wave equation the system of equations (1.7) may have 
real solutions. 

With the aid of the first one of Formulas (1.12) and with the substltu- 
tlons we can find the solution of the three- 
dimensional wave equation which has been obtained In a different way by 
Whlttaker 1153 

. , 
a= 1s f (Z siu I, cos 1, -+ y sin t, sin t, -t- 2 cos i, - cl, t,, tz) 4 dt, (3.2) 

--:1 --r. 
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Multiplying the first of the solutions (i.11) by 
with respect to the parameters from 

&.nt and integrating 
b’ to n , we obtain 

the 1ntegra.I 
0 to HIT and from 

nn 

Q= f (z sin t, cos t, f y sin t, sin t, f z cos t - ct, t,, f2) sin t, dt, dt, (3.3) 

which also was found by Whittaker [I5 and was used by Debye for the investi- 
gation of light wavee near the focus 1. 

We call attention to the fact that the Integrals (3.2) and (3.3) will remain 
to be wave functions for different limits of Integration alao. These limits 
may be constants or they may depend on one of the-parameters. The properties 
of B-solutions permit one to u8e, for example, as llmlte of Integration of 
one of the repeated integrals 0 and 8 , where e is determined by Equation 

I sin 0 ~0s t, + y sin 8 sin t, + 2 cos 6 - ct = F (6) (3.4) 

and r(0) Is an arbitrary function. 

With the aid of (1.11) one can obtain also the following integral of the 
three-dimensional wave equation 

7% an 

Q= SC exp [i/c (z sin t, cos t, + y sin t, sin 1, p z cos t, - ct)] f (tl, I~) dt, dt, (3.5) 

--II 0 

In an analogous manner one can show that the solutions which are used in 
the theory of the propagation of kaylelgh waves (71, and also the bolutions 
obtained ln [ll], belong to the first class of harmonic functions; one needs 
only to replace r, by tot . 

The obtained classes of b-solutions of the harmonic and wave equations 
Thur3, for example, me, of course, not general solutions of these equations. 

the known wave function of Euler [8] 

@= r-1 sin (r - ct) (9 = ~79 + Y* f Z’) 

and also the generalized Euler wave functions 

Q, = r-If (r f ct) 

(where 
I 

la an arbitrary function) do not belong to the 
second c ass of the obtained @-solutions. It is obvious 
tlons which can be obtained from the EuIer functions by e 
can not belong to this class. 

We note that the set of permlae~ble transformations of 

(3.6) 

(3.7) 

first nor to the 
that all wave func- 
change of variables 

wave (harmonic) 
functions, which yield again wave (harmonic) functions, Includes the follow- 
ing: addition, dlfferentletlon with respect to the coordinates q,.. .,x_,,t, 
and also any orthogonal transformation of the rectangular coordinate axes 
relative to which the wave (harmonlo) equation is covarlant. Other permls- 
slble transformations are: Integration with respect to parameters on which 
the wave function may depend; such Integration of products of wave functions 
by arbitrary functions of these parameters. 

In conclusion we cell attention to the fact that the KeneraIised method 
of #-solutions, just es any other methods, permits one 50 effectively con- 
struct only certain particular classes of harmonic and wave functions. Hence 
(keeping In mind that general solutions of the equations of equilibrium and 
motion In elasticity theory are expressed by means of such functions) one 
can assert that It Is at.111 lmpoeelble’to give an effective construction of 
general solutions of the equations of the theory of elasticity. However, 
the obtained classes of harmonic and wave functions are sufficiently broad 
to include the solutions of many problems of prectlcel value. 
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